Call us: (03) 5222 6868 
or Adam : 0450 486 310 
  

LASER THERAPY

Laser Therapy

In Australia little is known about this therapeutic modality. This has come about largely because it is an emerging modality for healthcare treatment and so is not taught as a subject in the current university and tertiary education curriculum in Australia and yet laser phototherapy more commonly called low level laser therapy (LLLT) has been widely used in the clinical setting since the early 1970’s in the United Kingdom, Europe, Scandinavia and Canada and continues to be utilised and researched in many other countries around the world. Australian medical and health care practitioner’s seeking new treatment solutions for their patients/clients will usually undertake further post –graduate education in new proven treatment strategies and modalities.

This method of laser application should not be confused with the thermal effects of high level laser therapy (HLLT) used in surgery, cosmetic rejuvenation and hair removal, instead LLLT instigates action mechanisms at a molecular and cellular level through the naturally occurring responses to the coherent light generated by lasers with very low power outputs, which are incapable of producing heating effects that damage body tissues.

Connective tissue in both humans and animals has been discovered to be electronically active and capable of conducting and receiving information due to its crystalline structure and semiconductor components that enable this phenomenon to occur. For complex living systems to survive, requires an intricate web of informational processes and communication in living systems involve two (2) main language: Chemical i.e. hormones, growth factors etc. and Energetic i.e. electrical via nerves and muscles OR electronic vibrational or oscillatory mechanisms that move molecules from one place to another for chemical interactions to occur (Pienta&Coffey1991. Adolf 1982).

While genes govern the manufacture of molecules, it is the forces exerted by the bio-electronic fields that bring the molecules together. In order to maintain a highly ordered biological state, that is distinct from thermodynamic equilibrium, requires restoration processes to repeatedly occur in order to maintain biological regulation of an energy exchanging system (Adey1990).

Laser light facilitates energy transference and has wavelike and particle properties that recognise no boundaries, at the surface of a molecule, cell, or organism as a whole. From earlier research by Frochlich, we know that vibrations that oscillate throughout the body occur at many different frequencies including visible and near visible light frequencies and serve as signals that integrate and support biological self – regulation and homeostasis relating to injury, growth, immunity and functioning of the body as a whole and this begins with the modulation of intra-cellular enzyme pathways, in particular cytochrome C oxidase.

Scientific findings by Dr Tina Karu has identified other types of photo-acceptors of laser light within the 600nm to 1000nm wavelengths, beside Cytochrome C oxidase , which helps to explain the versatility of effects caused by LLLT as a supportive bio-modulating therapy for all types of tissues and non-healing wounds and ulcers, particularly in diabetic patients, who have impaired healing (Hopkins et al 2004). The first line of defence in non-healing tissues and bone is to support the cell mitochondria , which is responsible for producing 95% of the cells energy and this vital function is the first , primary action of LLLT , which is then followed by secondary extra-cellular photochemical signalling that continues to modulate physiological and physiological reactions naturally by generating a nervous or neuroendocrine signal at the treatment site and this can continue for hours or days after LLLT to support autologous healing ,reduce inflammation and pain with enhanced neural and auto- immune function (Tuner J. Hode L. 2011., Karu, T. 1986,1988,1989a,1989b).

The benefits of LLLT in sports medicine for treatment of injuries is well known, and increases in micro-circulation due to vasodilation, help to protect against muscle ischemia. Skeletal muscle fatigue (SMF) is an inevitable outcome in athletic training and sports competitions that can reduce muscle strength and motor control and pre-dispose the athlete to a variety of musculoskeletal conditions. A large number of therapeutic modalities are used in physiotherapy and rehabilitation to accelerate muscle recovery after exercise. A recent research publication stated that LLLT had an ergogenic effect and protected muscles from over fatigue when applied before exercise (Leal -Junior et al 2010). Three (3) other possible mechanisms that were explored in relation to improvement of human exercise performance following LLLT are based on the importance of cellular energy production instigated by cytochrome C oxidase (Silveira at al 2009).

Acupuncture practitioners have long been using laser pens for replacing metal needles for acupuncture (Reichmanis et al 1975). Advances in laser technology now enable acupuncturists to provide additional energy and information to the biological system via specific frequencies that enable faster re-balancing of the entire, meridian system in seconds, which is measurable using a specially designed laser hand-piece.

Systematic review via meta-analysis of LLLT research literature from MEDLINE, also investigated the clinical effectiveness of LLLT for joint pain.Twenty two (22) randomised, controlled clinical trials consisting of 1014 patients treated with LLLT for joint disease and pain were selected. The overall methodology reported that the main cause for the development of joint disease is chronic inflammatory processes ,which can be naturally modulated by applying LLLT to the affected tissue using the right dose of laser light (joules) and utilising the most suitable wavelength (nm).

Although joint pain can be controlled with the use of NSAIDs anti-inflammatory medications and corticosteroid injections they are not entirely side - effect free and surgery does not always produce satisfying results, but LLLT has been found to be a good alternative to the use of anti-inflammatory medication and has no reported side effects, particularly in elderly patients who may already be taking multiple medications for other health complaints (Ho Jang, M.S. and Hyunju Lee2012).

Further research developments in recent years, has shown improved functional outcome, following surgical repair of injured nerves, as well as neuroprotective effects and normalisation of mitochondrial function and axon transport processes, which could contribute to preventing or slowing down the degeneration of neuron function associated with diseases such as Parkinsons Disease and neuron degeneration following acute ischemic stroke (Lapchak,P.A.2010., Shaw et al 2010)

Laser phototherapy has also been shown to alter cardiac cytokine expression following acute myocardial infarction ( heart attack) (Yang et al 20111) and cardiomyocyte cells were protected from hypoxia and reoxygenation injury due to nitric oxide-dependant mitochondrial mechanisms(Zhang et al 2009) in stem cell therapy combined with LLLT now offers relief from oral mucositis which can affect up to 100% of patients receiving hematopoietic stem cell transplantation and high dose chemotherapy, by improving immune response and healing capacity (Bjordal et al 2011) and positive findings have provided evidence of the effectiveness of LLLT in managing post mastectomy lymphoedema and reduction in associated tissue fibrosis (Rufina et al 2009) and growth of new collateral lymph vessels to restore better lymph drainage of affected tissue (Lievens 1977, Piller and Thelanda1995).

Share by: